k by Whitney

Whitney's use of curly brackets to denote function abstraction is predated by 
Goldstein in his "Recursive Analysis".
In Goodstein's "Recursive Number Theory" function abstraction is achieved 
simply through the inclusion of x,y, and z in classical algebraic expressions.

Verb       (unary)
: gets
+ plus     flip
- minus    negate
* times    first
% divide   sqrt
! mod|map  int|key
& min|and  where
| max|or   reverse
< less     asc
> more     desc
= equal    group
~ match    not
, concat   enlist
^ except   null
# take|rsh count
_ drop|cut floor
$ cast|pad string
? find|rnd distinct
@ at       type
. eval     val

Adverb
'  each|bin
/  over|join
\  scan|split
': eachprior
/: eachright
\: eachleft

System
0: file r/w(text)
1: file r/w(byte)
2: open/msg/close

Other
$[c;t;f]     cond
?[t;c;b[;a]] query
@[x;i;f[;y]] amend
.[x;i;f[;y]] dmend

\l a.k  load
\t:n x  time
\w workspace
\v variables
\f functions
\a ancestors
\d directory

/ comment
\ exit

Noun  list null(inf)
int   2 23   0N(0W)
float 2 .3   0n(0W)
char  "ab"   " "
name  `a`b   `

date 2014.06.28
time 12:34:56.789

list (2;3.4;`c)
dict [a:2;b::a]
func {(+/x)%#x}
view f::32+1.8*c

Sources
http://www.kparc.com/
http://johnearnest.github.io/ok/index.htmlo/ok/index.html